Combustion modeling and kinetic rate calculations for a stoichiometric cyclohexane flame. 1. Major reaction pathways.

نویسندگان

  • Hongzhi R Zhang
  • Lam K Huynh
  • Nawee Kungwan
  • Zhiwei Yang
  • Shaowen Zhang
چکیده

The Utah Surrogate Mechanism was extended in order to model a stoichiometric premixed cyclohexane flame (P = 30 Torr). Generic rates were assigned to reaction classes of hydrogen abstraction, beta scission, and isomerization, and the resulting mechanism was found to be adequate in describing the combustion chemistry of cyclohexane. Satisfactory results were obtained in comparison with the experimental data of oxygen, major products and important intermediates, which include major soot precursors of C2-C5 unsaturated species. Measured concentrations of immediate products of fuel decomposition were also successfully reproduced. For example, the maximum concentrations of benzene and 1,3-butadiene, two major fuel decomposition products via competing pathways, were predicted within 10% of the measured values. Ring-opening reactions compete with those of cascading dehydrogenation for the decomposition of the conjugate cyclohexyl radical. The major ring-opening pathways produce 1-buten-4-yl radical, molecular ethylene, and 1,3-butadiene. The butadiene species is formed via beta scission after a 1-4 internal hydrogen migration of 1-hexen-6-yl radical. Cascading dehydrogenation also makes an important contribution to the fuel decomposition and provides the exclusive formation pathway of benzene. Benzene formation routes via combination of C2-C4 hydrocarbon fragments were found to be insignificant under current flame conditions, inferred by the later concentration peak of fulvene, in comparison with benzene, because the analogous species series for benzene formation via dehydrogenation was found to be precursors with regard to parent species of fulvene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple benzene-formation paths in a fuel-rich cyclohexane flame

Detailed data and modeling of cyclohexane flames establish that a mixture of pathways contributes to benzene formation and that this mixture changes with stoichiometry. Mole-fraction profiles are mapped for more than 40 species in a fuel-rich, premixed flat flame (/ = 2.0, cyclohexane/O2/30% Ar, 30 Torr, 50.0 cm/s) using molecular-beam mass spectrometry with VUV-photoionization at the Advanced ...

متن کامل

Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.

The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the lit...

متن کامل

An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane.

The experimental study of the oxidation of cyclohexane has been performed in a jet-stirred reactor at temperatures ranging from 500 to 1100 K (low- and intermediate temperature zones including the negative temperature-coefficient area), at a residence time of 2 s and for dilute mixtures with equivalence ratios of 0.5, 1, and 2. Experiments were carried out at quasi-atmospheric pressure (1.07 ba...

متن کامل

Temperature-Dependent Feature Sensitivity Analysis for Combustion Modeling

Sensitivity analysis is one of the most widely used tools in kinetic modeling. Typically, it is performed by perturbing the A-factors of the individual reaction rate coefficients and monitoring the effect of these perturbations on the observables of interest. However, the sensitivity coefficients obtained in this manner do not contain any information on possible temperature dependent effects. Y...

متن کامل

On the Dependence of Soot Formation and Combustion on Swirling Combustion Furnaces: Measurement and Simulation

Soot concentration distribution is investigated both numerically and experimentally in methane-air diffusion flame. The experimental work is conducted with a cylindrical swirl stabilized combustor. Filter paper technique is used to measure soot volume fraction inside the combustor. The numerical simulation is based on the solution of the fully-coupled conservation equations for swirling turbule...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 111 19  شماره 

صفحات  -

تاریخ انتشار 2007